LEAD ACID BATTERIES

 

 

 

 

Practically all batteries used in PV and all but the smallest backup systems are Lead-Acid type batteries. Even after over a century of use, they still offer the best price to power ratio. 

 

It is important to note that nearly all of the batteries commonly used in deep cycle applications are Lead-Acid. This includes the standard flooded (wet) batteries, gelled, and AGM. They all use the same chemistry, although the actual construction of the plates etc can vary considerably. NiCads, Nickel-Iron, and other types are found in some systems, but are not common due to their expense and/or poor efficiency.

 

 

Major Battery Types

 

Batteries are divided in two ways, by application (what they are used for) and construction (how they are built). The major applications are automotive, marine, and deep-cycle. Deep-cycle includes solar electric (PV), backup power, and RV and boat "house" batteries. The major construction types are flooded (wet), gelled, and AGM (Absorbed Glass Mat). AGM batteries are also sometimes called "starved electrolyte" or "dry", because the fiberglass mat is only 95% saturated with Sulfuric acid and there is no excess liquid.

 

Flooded may be standard, with removable caps, or the so-called "maintenance free" (that means they are designed to die one week after the warranty runs out). All gelled are sealed and a few are "valve regulated", which means that a tiny valve keeps a slight positive pressure.  Nearly all AGM batteries are sealed valve regulated (commonly referred to as "VRLA" - Valve Regulated Lead-Acid). Most valve regulated are under some pressure - 1 to 4 psi at sea level.

 

 

Lifespan of Batteries

 

The lifespan of a battery will vary considerably with how it is used, how it is maintained and charged, temperature, and other factors. In extreme cases, it can vary to extremes - we have seen L-16's killed in less than a year by severe overcharging, and we have a large set of surplus telephone batteries that sees only occasional (5-10 times per year) heavy service that are now over 25 years old. We have seen gelled cells destroyed in one day when overcharged with a large automotive charger. We have seen golf cart batteries destroyed without ever being used in less than a year because they were left sitting in a hot garage without being charged. Even the so-called "dry charged" (where you add acid when you need them) have a shelf life of at most 18 months, as they are not totally dry (actually, a few are, but hard to find, the vast majority are shipped with damp plates).

 

 

These are some general (minimum - maximum) typical expectations for batteries if used in deep cycle service:

 

Starting: 3-12 months
Marine: 1-6 years
Golf cart: 2-6 years
AGM deep cycle: 4-7 years
Gelled deep cycle: 2-5 years
Deep cycle (L-16 type etc): 4-8 years
Rolls-Surrette premium deep cycle: 7-15 years
Industrial deep cycle (Crown and Rolls 4KS series): 10-20+ years
Telephone (float): 1-20 years. These are usually special purpose "float service", but often appear on the surplus market as "deep cycle". They can vary considerably, depending on age, usage, care, and type.
NiFe (alkaline): 3-25 years
NiCad: 1-20 years

Starting, Marine, and Deep-Cycle Batteries

  • Starting (sometimes called SLI, for starting, lighting, ignition) batteries are commonly used to start and run engines. Engine starters need a very large starting current for a very short time. Starting batteries have a large number of thin plates for maximum surface area. The plates are composed of a Lead "sponge", similar in appearance to a very fine foam sponge. This gives a very large surface area, but if deep cycled, this sponge will quickly be consumed and fall to the bottom of the cells. Automotive batteries will generally fail after 30-150 deep cycles if deep cycled, while they may last for thousands of cycles in normal starting use (2-5% discharge).

  • Deep cycle batteries are designed to be discharged down as much as 80% time after time, and have much thicker plates. The major difference between a true deep cycle battery and others is that the plates are SOLID Lead plates - not sponge. Unfortunately, it is often impossible to tell what you are really buying in some of the discount stores or places that specialize in automotive batteries. The popular golf cart battery is generally a "semi" deep cycle - better than any starting battery, better than most marine, but not as good as a true deep cycle solid Lead plate, such the L-16 or industrial type. However, because the golf cart (T-105, US-2200, GC-4 etc) batteries are so common, they are usually quite economical for small to medium systems.

  • Many (most?) Marine batteries are usually actually a "hybrid", and fall between the starting and deep-cycle batteries, while a few (Rolls-Surrette and Concorde, for example) are true deep cycle. In the hybrid, the plates may be composed of Lead sponge, but it is coarser and heavier than that used in starting batteries. It is often hard to tell what you are getting in a "marine" battery, but most are a hybrid. "Hybrid" types should not be discharged more than 50%. Starting batteries are usually rated at "CCA", or cold cranking amps, or "MCA", Marine cranking amps - the same as "CA". Any battery with the capacity shown in CA or MCA may not be a true deep-cycle battery. It is sometimes hard to tell, as the terms marine and deep cycle are sometimes overused. CA and MCA ratings are at 32 degrees F, while CCA is at zero degree F. Unfortunately, the only positive way to tell with some batteries is to buy one and cut it open - not much of an option.

Using a deep cycle battery as a starting battery

 

There is generally no problem with this, providing that allowance is made for the lower cranking amps compared to a similar size starting battery. As a general rule, if you are going to use a true deep cycle battery (such as the Concorde) also as a starting battery, it should be oversized about 20% compared to the existing or recommended starting battery group size to get the same cranking amps. That is about the same as replacing a group 24 with a group 31. With modern engines with fuel injection and electronic ignition, it generally takes much less battery power to crank and start them, so raw cranking amps is less important than it used to be. On the other hand, many cars, boats, and RV's are more heavily loaded with power sucking "appliances", such as megawatt stereo systems etc. that are more suited for deep cycle batteries. We have been using the Concorde SunExtender AGM batteries in most of our vehicles for some time now with no problems.

 

Battery Construction Materials

 

Nearly all large rechargeable batteries in common use are Lead-Acid type. (There are some NiCads in use, but for most purposes the very high initial expense, and the high expense of disposal, does not justify them). The acid is typically 30% Sulfuric acid and 70% water at full charge. NiFe (Nickel-Iron) batteries are also available - these have a very long life, but rather poor efficiency (60-70%) and the voltages are different, making it more difficult to match up with standard 12v/24/48v systems and inverters. The biggest problem with NiFe batteries is that you may have to put in 100 watts to get 70 watts of charge - they are much less efficient than Lead-Acid. What you save on batteries you will have to make up for by buying a larger solar panel system. NiCads are also inefficient - typically around 65% - and very expensive. However, NiCads can be frozen without damage, so are sometimes used in areas where the temperatures may fall below -50 degrees F. Most AGM batteries will also survive freezing with no problems, even though the output when frozen will be little or nothing.

 

Industrial deep cycle batteries

 

Sometimes called "fork lift", "traction" or "stationary" batteries, are used where power is needed over a longer period of time, and are designed to be "deep cycled", or discharged down as low as 20% of full charge (80% DOD, or Depth of Discharge). These are often called traction batteries because of their widespread use in forklifts, golf carts, and floor sweepers (from which we get the "GC" and "FS" series of battery sizes). Deep cycle batteries have much thicker plates than automotive batteries.

 

Plate Thickness

 

Plate thickness (of the Positive plate) matters because of a factor called "positive grid corrosion". This ranks among the top 3 reasons for battery failure. The positive (+) plate is what gets eaten away gradually over time, so eventually there is nothing left - it all falls to the bottom as sediment. Thicker plates are directly related to longer life, so other things being equal, the battery with the thickest plates will last the longest. 

Automotive batteries typically have plates about .040" (40/1000") thick, while forklift batteries may have plates more than 1/4" (.265" for example in the Rolls-Surrette) thick -  almost 7 times as thick as auto batteries. The typical golf cart will have plates that are around .07 to .11" thick. The Concorde AGM's are .115", The Rolls-Surrette L-16 type (CH460) is .150", and the US Battery and Trojan L-16 types are .090".

Most industrial deep-cycle batteries use Lead-Antimony plates rather than the Lead-Calcium used in AGM or gelled deep-cycle batteries. The Antimony increases plate life and strength, but increases gassing and water loss.  This is why most industrial batteries have to be checked often for water level if you do not have Hydrocaps. The self discharge of batteries with Lead-Antimony plates can be high - as much as 1% per day on an older battery. A new AGM typically self-discharges at about 1-2% per month, while an old one may be as much as 2% per week.

 

Sealed batteries

 

Sealed batteries are made with vents that (usually) cannot be removed. The so-called Maintenance Free batteries are also sealed, but are not usually leak proof. Sealed batteries are not totally sealed, as they must allow gas to vent during charging. If overcharged too many times, some of these batteries can lose enough water that they will die before their time. Most smaller deep cycle batteries (including AGM) use Lead-Calcium plates for increased life, while most industrial and forklift batteries use Lead-Antimony for greater plate strength.

 

A few industrial batteries have special caps that convert the Hydrogen and Oxygen back into water, reducing water loss by up to 95%. The popular "HydroCaps" that we sell for flooded batteries do the same job for conventional ("wet"), golf cart, and fork-lift batteries. Lead-Antimony batteries have a much higher self-discharge rate (2-10% per week) than Lead or Lead-Calcium (1-5% per month), but the Antimony improves the mechanical strength of the plates, which is an important factor in electric vehicles. They are generally used where they are under constant or very frequent charge/discharge cycles, such as fork lifts and floor sweepers. The Antimony increases plate life at the expense of higher self discharge. If left for long periods unused, these should be trickle charged to avoid damage from sulfation - but this applies to ANY battery.  There are trade offs. The Lead-Antimony types have a very long lifespan, but higher self discharge rates.

 

Gelled electrolyte

 

Gelled batteries, or "Gel Cells" contain acid that has been "gelled" by the addition of Silica Gel, turning the acid into a solid mass that looks like gooey Jell-O. The advantage of these batteries is that it is impossible to spill acid even if they are broken. However, there are several disadvantages. One is that they must be charged at a slower rate (C/20) to prevent excess gas from damaging the cells. They cannot be fast charged on a conventional automotive charger or they may be permanently damaged. This is not usually a problem with solar electric systems, but if an auxiliary generator or inverter bulk charger is used, current must be limited to the manufacturers specifications.

 

Most better inverters commonly used in solar electric systems can be set to limit charging current to the batteries.

Some other disadvantages of gel cells is that they must be charged at a lower voltage (2/10th's less) than flooded or AGM batteries. If overcharged, voids can develop in the gel which will never heal, causing a loss in battery capacity. In hot climates, water loss can be enough over 2-4 years to cause premature battery death. It is for this and other reasons that we no longer sell any of the gelled cells except for replacement use. The newer AGM (absorbed glass mat) batteries have all the advantages (and then some) of gelled, with none of the disadvantages.

 

AGM, or Absorbed Glass Mat Batteries

 

A newer type of sealed battery uses "Absorbed Glass Mats", or AGM between the plates. This is a very fine fiber Boron-Silicate glass mat. These type of batteries have all the advantages of gelled, but can take much more abuse. We sell the Concorde (and Lifeline, made by Concorde) AGM batteries. These are also called "starved electrolyte", as the mat is about 95% saturated rather than fully soaked. That also means that they will not leak acid even if broken.

 

AGM batteries have several advantages over both gelled and flooded, at about the same cost as gelled:

 

Since all the electrolyte (acid) is contained in the glass mats, they cannot spill, even if broken. This also means that since they are non-hazardous, the shipping costs are lower. In addition, since there is no liquid to freeze and expand, they are practically immune from freezing damage.

 

Nearly all AGM batteries are "recombinant" - what that means is that the Oxygen and Hydrogen recombine INSIDE the battery. These use gas phase transfer of oxygen to the negative plates to recombine them back into water while charging and prevent the loss of water through electrolysis. The recombining is typically 99+% efficient, so almost no water is lost.

 

The charging voltages are the same as for any standard battery - no need for any special adjustments or problems with incompatible chargers or charge controls. And, since the internal resistance is extremely low, there is almost no heating of the battery even under heavy charge and discharge currents. The Concorde (and most AGM) batteries have no charge or discharge current limits.

 

AGM's have a very low self-discharge - from 1% to 3% per month is usual. This means that they can sit in storage for much longer periods without charging than standard batteries. The Concorde batteries can be almost fully recharged (95% or better) even after 30 days of being totally discharged.

 

AGM's do not have any liquid to spill, and even under severe overcharge conditions hydrogen emission is far below the 4% max specified for aircraft and enclosed spaces. The plates in AGM's are tightly packed and rigidly mounted, and will withstand shock and vibration better than any standard battery.

 

Even with all the advantages listed above, there is still a place for the standard flooded deep cycle battery. AGM's will cost 2 to 3 times as much as flooded batteries of the same capacity. In many installations, where the batteries are set in an area where you don't have to worry about fumes or leakage, a standard or industrial deep cycle is a better economic choice. AGM batteries main advantages are no maintenance, completely sealed against fumes, Hydrogen, or leakage, non-spilling even if they are broken, and can survive most freezes. Not everyone needs these features.

 

Temperature Effects on Batteries

 

Battery capacity (how many amp-hours it can hold) is reduced as temperature goes down, and increased as temperature goes up. This is why your car battery dies on a cold winter morning, even though it worked fine the previous afternoon. If your batteries spend part of the year shivering in the cold, the reduced capacity has to be taken into account when sizing the system batteries. The standard rating for batteries is at room temperature - 25 degrees C (about 77 F). At approximately -22 degrees F (-27 C), battery AH capacity drops to 50%. At freezing, capacity is reduced by 20%. Capacity is increased at higher temperatures - at 122 degrees F, battery capacity would be about 12% higher.

 

Battery charging voltage also changes with temperature. It will vary from about 2.74 volts per cell (16.4 volts) at -40 C to 2.3 volts per cell (13.8 volts) at 50 C. This is why you should have temperature compensation on your charger or charge control if your batteries are outside and/or subject to wide temperature variations. Some charge controls have temperature compensation built in (such as Morningstar) - this works fine if the controller is subject to the same temperatures as the batteries. However, if your batteries are outside, and the controller is inside, it does not work that well. Adding another complication is that large battery banks make up a large thermal mass.

 

Thermal mass means that because they have so much mass, they will change internal temperature much slower than the surrounding air temperature. A large insulated battery bank may vary as little as 10 degrees over 24 hours internally, even though the air temperature varies from 20 to 70 degrees. For this reason, external (add-on) temperature sensors should be attached to one of the POSITIVE plate terminals, and bundled up a little with some type of insulation on the terminal. The sensor will then read very close to the actual internal battery temperature. 

Even though battery capacity at high temperatures is higher,  battery life is shortened. Battery capacity is reduced by 50% at -22 degrees F - but battery LIFE increases by about 60%. Battery life is reduced at higher temperatures - for every 15 degrees F over 77, battery life is cut in half. This holds true for ANY type of Lead-Acid battery, whether sealed, gelled, AGM, industrial or whatever. This is actually not as bad as it seems, as the battery will tend to average out the good and bad times. Click on the small graph to see a full size chart of temperature vs capacity.

 

One last note on temperatures - in some places that have extremely cold or hot conditions, batteries may be sold locally that are NOT standard electrolyte (acid) strengths. The electrolyte may be stronger (for cold) or weaker (for very hot) climates. In such cases, the specific gravity and the voltages may vary from what we show.

 

Cycles vs Life

 

A battery "cycle" is one complete discharge and recharge cycle. It is usually considered to be discharging from 100% to 20%, and then back to 100%. However, there are often ratings for other depth of discharge cycles, the most common ones are 10%, 20%, and 50%. You have to be careful when looking at ratings that list how many cycles a battery is rated for unless it also states how far down it is being discharged. For example, one of the widely advertised telephone type (float service) batteries have been advertised as having a 20-year life. If you look at the fine print, it has that rating only at 5% DOD - it is much less when used in an application where they are cycled deeper on a regular basis. Those same batteries are rated at less than 5 years if cycled to 50%. For example, most golf cart batteries are rated for about 550 cycles to 50% discharge - which equates to about 2 years.

 

Battery life is directly related to how deep the battery is cycled each time. If a battery is discharged to 50% every day, it will last about twice as long as if it is cycled to 80% DOD. If cycled only 10% DOD, it will last about 5 times as long as one cycled to 50%. Obviously, there are some practical limitations on this - you don't usually want to have a 5 ton pile of batteries sitting there just to reduce the DOD. The most practical number to use is 50% DOD on a regular basis. This does NOT mean you cannot go to 80% once in a while. It's just that when designing a system when you have some idea of the loads, you should figure on an average DOD of around 50% for the best storage vs cost factor. Also, there is an upper limit - a battery that is continually cycled 5% or less will usually not last as long as one cycled down 10%. This happens because at very shallow cycles, the Lead Dioxide tends to build up in clumps on the the positive plates rather in an even film. The graph above shows how lifespan is affected by depth of discharge. The chart is for a Concorde Lifeline battery, but all lead-acid batteries will be similar in the shape of the curve, although the number of cycles will vary.

 

Battery Voltages

 

All Lead-Acid batteries supply about 2.14 volts per cell (12.6 to 12.8 for a 12 volt battery) when fully charged. Batteries that are stored for long periods will eventually lose all their charge. This "leakage" or self discharge varies considerably with battery type, age, & temperature. It can range from about 1% to 15% per month. Generally, new AGM batteries have the lowest, and old industrial (Lead-Antimony plates) are the highest. In systems that are continually connected to some type charging source, whether it is solar, wind, or an AC powered charger this is seldom a problem. However, one of the biggest killers of batteries is sitting stored in a partly discharged state for a few months. A "float" charge should be maintained on the batteries even if they are not used (or, especially if they are not used). Even most "dry charged" batteries (those sold without electrolyte so they can be shipped more easily, with acid added later) will deteriorate over time. Max storage life on those is about 2-3 years.

 

Batteries self-discharge faster at higher temperatures. Lifespan can also be seriously reduced at higher temperatures - most manufacturers state this as a 50% loss in life for every 15 degrees F over a 77 degree cell temperature. Lifespan is increased at the same rate if below 77 degrees, but capacity is reduced. This tends to even out in most systems - they will spend part of their life at higher temperatures, and part at lower.

 

State of Charge

 

State of charge, or conversely, the depth of discharge (DOD) can be determined by measuring the voltage and/or the specific gravity of the acid with a hydrometer. This will NOT tell you how good (capacity in AH) the battery condition is - only a sustained load test can do that. Voltage on a fully charged battery will read 2.12 to 2.15 volts per cell, or 12.7 volts for a 12 volt battery. At 50% the reading will be 2.03 VPC (Volts Per Cell), and at 0% will be 1.75 VPC or less. Specific gravity will be about 1.265 for a fully charged cell, and 1.13 or less for a totally discharged cell. This can vary with battery types and brands somewhat - when you buy new batteries you should charge them up and let them sit for a while, then take a reference measurement. Many batteries are sealed, and hydrometer reading cannot be taken, so you must rely on voltage. Hydrometer readings may not tell the whole story, as it takes a while for the acid to get mixed up in wet cells. If measured right after charging, you might see 1.27 at the top of the cell, even though it is much less at the bottom. This does not apply to gelled or AGM batteries. 

 

"False" Capacity

 

A battery can meet all the tests for being at full charge, yet be much lower than it's original capacity. If plates are damaged, sulfated, or partially gone from long use, the battery may give the appearance of being fully charged, but in reality acts like a battery of much smaller size. This same thing can occur in gelled cells if they are overcharged and gaps or bubbles occur in the gel. What is left of the plates may be fully functional, but with only 20% of the plates left... Batteries usually go bad for other reasons before reaching this point, but it is something to be aware of if your batteries seem to test OK but lack capacity and go dead very quickly under load.

On the table below, you have to be careful that you are not just measuring the surface charge. To properly check the voltages, the battery should sit at rest for a few hours, or you should put a small load on it, such as a small automotive bulb, for a few minutes. The voltages below apply to ALL Lead-Acid batteries, except gelled. For gel cells, subtract .2 volts. Note that the voltages when actually charging will be quite different, so do not use these numbers for a battery that is under charge.

 

Amp-Hour Capacity

 

All deep cycle batteries are rated in amp-hours. An amp-hour is one amp for one hour, or 10 amps for 1/10 of an hour and so forth. It is amps x hours. If you have something that pulls 20 amps, and you use it for 20 minutes, then the amp-hours used would be 20 (amps) x .333 (hours), or 6.67 AH. The accepted AH rating time period for batteries used in solar electric and backup power systems (and for nearly all deep cycle batteries) is the "20 hour rate". This means that it is discharged down to 10.5 volts over a 20 hour period while the total actual amp-hours it supplies is measured. Sometimes ratings at the 6 hour rate and 100 hour rate are also given for comparison and for different applications. The 6-hour rate is often used for industrial batteries, as that is a typical daily duty cycle. Sometimes the 100 hour rate is given just to make the battery look better than it really is, but it is also useful for figuring battery capacity for long-term backup amp-hour requirements.

 

Why amp-hours are specified at a particular rate:

 

Because of something called the Peukert Effect. The Peukert value is directly related to the internal resistance of the battery. The higher the internal resistance, the higher the losses while charging and discharging, especially at higher currents. This means that the faster a battery is used (discharged), the LOWER the AH capacity. Conversely, if it is drained slower, the AH capacity is higher. This is important because some folks have chosen to rate their batteries at the 100 hour rate - which makes them look a lot better than they really are.

 

 

SOLAR NAVIGATOR'S STORAGE BRIEF

 

Solar Navigator needs sufficient storage capacity to even out the vagaries of natural supply, after the global weather system has had its say.  Fortunately, BP has a number of monitoring stations around the world constantly measuring incoming radiation so we have a good idea what to expect.  The battery banks of Solarnavigator must cater for the worst scenario and still keep something in reserve for a rainy day.  

 

Imagine: There has been no Sun for several days.  To maintain steerage and conserve energy Solar Navigator has been cruising at 1/4 speed waiting for the weather to break.  The emergency reserve is coming close and then unfavourable winds threaten to drive you close to an approaching land mass. This is what the reserve was intended for - to keep you out of trouble.  Hence never use your emergency reserve, unless for an emergency situation.

 

The size of the reserve depends on how cautious you want to be.  Our backers and insurers will want to know that we are prepared for the worst and then some.  Indeed, we will be.  However, at the back of our mind is the weight penalty having too much insurance could impose.  All design, is of course a compromise.............................

 

 

 

 

 

LINKS

 

 


 

 

Solar Navigator triple hull SWASH trimaran tank test model

 

The Solar Navigator - SWASSH (Small Waterplane Area Stabilized Single Hull) test model 2012

The latest Solarnavigator is designed to be capable of an autonomous world navigation set for an attempt 

in 2015 if all goes according to schedule.

 

 

 

AUTOMOTIVE  |  EDUCATION  BLUEPLANET   |  SOLAR CAR RACING TEAMS  |  SOLAR CAR RACING TEAMS  |  SOLAR CARS

This website is copyright 1991- 2013 Electrick Publications. All rights reserved. The bird logo Blue bird bluebird trademark, electric motors, solar panels, batteriesand names Blueplanet Ecostar and Blue Max are trademarks .  The Blueplanet vehicle configuration is registered .  The name Solar Navigator is a registered trademark and the boat design is copyright,  All other trademarks hereby acknowledged.  Max Energy Limited is an educational charity working for world peace.